

Contents lists available at ScienceDirect

Journal of Solid State Chemistry

journal homepage: www.elsevier.com/locate/jssc

Oxygen-vacancy concentration in A_2 MgMoO_{6- δ} double-perovskite oxides

Y. Matsuda^a, M. Karppinen^{a,b,*}, Y. Yamazaki^c, H. Yamauchi^{a,b}

^a Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama 226-8503, Japan

^b Laboratory of Inorganic Chemistry, Department of Chemistry, Helsinki University of Technology, FI-02015 TKK, Finland

^c Department of Innovative and Engineered Materials, Tokyo Institute of Technology, Yokohama 226-8502, Japan

ARTICLE INFO

ABSTRACT

Article history: Received 7 February 2009 Received in revised form 13 April 2009 Accepted 16 April 2009 Available online 23 April 2009

Keywords: Double perovskite Oxygen content Chemical substitution Coulometric titration SOFC anode material

1. Introduction

Solid oxide fuel cells (SOFCs) are capable of converting chemical energy of a fuel (e.g. hydrogen) directly and with a high efficiency into electricity. One of the desires yet to be realized is to develop anode materials for SOFCs that would operate properly not only with pure H_2 gas but also with low-cost and more abundant fuels such as natural gas [1–4]. The conventional choice for the anode material, Ni/YSZ cermet, gets readily poisoned by carbon and sulfur present in natural gas and other hydrocarbon-based fuels.

Recently Huang et al. [5,6] demonstrated that the *B*-site ordered double-perovskite oxide $Sr_2MgMoO_{6-\delta}$ tolerates well both carbon and sulfur and shows excellent SOFC-anode performances for a variety of fuels (though the phase stability under highly reducing conditions has been discussed [7,8]). A necessary requirement for a material to perform well as an SOFC anode is that it is a "mixed ion and electron conductor" (MIEC). In $Sr_2MgMoO_{6-\delta}$ the MIEC condition is apparently connected with the presence of oxygen vacancies which would not only give good oxide-ion conduction but also create mixed-valent $Mo^{V/VI}$ species and hence result in good electron conduction [5,6]. Even though a proper amount of vacant oxygen sites is believed to be crucially important for the MIEC oxides, little attention has been paid to the

Accurate oxygen-content analysis by means of a coulometric redox titration method specially devised for the purpose shows that as-synthesized (in 5% H₂/Ar) samples of the recently reported novel solid oxide fuel cells anode material Sr₂MgMoO_{6- δ} contain oxygen vacancies with a concentration of $\delta \approx 0.05$. Oxygen contents and the resultant Mo-valence values are also analyzed for various A₂MgMoO_{6- δ} samples in order to reveal both the isovalent and aliovalent *A*-site cation substitution effects. © 2009 Elsevier Inc. All rights reserved.

reliable determination of the absolute oxygen contents in $Sr_2MgMoO_{6-\delta}$ and related double-perovskite samples.

We have developed an accurate coulometric titration method for the precise oxygen-content and Mo-valence analysis of Sr₂MgMoO_{6- δ}-type samples. The results obtained thereof reveal that the Sr₂MgMoO_{6- δ} phase indeed is oxygen-deficient. Oxygen contents and the resultant Mo-valence values were moreover determined for various A_2 MgMoO_{6- δ} samples to gain deeper understanding on both isovalent (Ca^{II} and Ba^{II} for Sr^{II}) and aliovalent (La^{III} for Sr^{II}) *A*-site cation substitution effects in this exciting system. Note that recently Ji et al. [9] reported enhanced SOFC characteristics for their La^{III}-for-Sr^{II} substituted (Sr,La)₂MgMoO_{6- δ} samples.

2. Experimental

Sample synthesis: Polycrystalline samples of A_2 MgMoO_{6- δ} (A =Ca, Sr, Ba, La; see Table 1 for the exact compositions) were synthesized by an EDTA-chelation method [10]. Stoichiometric amounts of CaCO₃, SrCO₃, BaCO₃ La₂O₃, MgO and (NH₄)₆Mo₇O₂₄·4H₂O powders were dissolved in 1 M HNO₃ solution from which the metal ions were chelated with an EDTA/NH₃ solution containing EDTA in 50% excess. After evaporating the solvent and burning the residue, the remaining ash was calcined in air first at 400 °C for 12 h and then at 800–1200 °C for 8 h. Finally the calcined powder was pressed into pellets and sintered at 1000 °C (at 800 °C for (Sr_{1-x}Ca_x)₂ MgMoO_{6- δ} with x = 0.375 and 0.500) in a 5% H₂/Ar gas flow for

^{*} Corresponding author at: Laboratory of Inorganic Chemistry, Department of Chemistry, Helsinki University of Technology, P.O. Box 6100, FI-02015 TKK, Finland. Fax: +358 9 462 373.

E-mail address: maarit.karppinen@tkk.fi (M. Karppinen).

^{0022-4596/\$ -} see front matter \circledcirc 2009 Elsevier Inc. All rights reserved. doi:10.1016/j.jssc.2009.04.016

Table 1

Crystal structure data and oxygen-content determination results for the A_2 MgMoO_{6- δ} samples.

Α	a (Å)	b (Å)	c (Å)	β (deg.)	$V(Å^3)$	δ	$v_{\rm Mo}$
Ba	5.719	8.086	5.716	89.96	264.3	0.04	5.92
Ba _{0.875} Sr _{0.125}	5.712	8.064	5.707	89.84	262.6	0.04	5.92
Ba _{0.125} Sr _{0.875}	5.650	7.914	5.609	89.59	250.8	0.05	5.90
Sr	5.611	7.885	5.589	89.81	247.4	0.05	5.90
Sr _{0.875} Ca _{0.125}	5.608	7.902	5.571	89.61	247.0	0.05	5.90
Sr _{0.750} Ca _{0.250}	5.606	7.860	5.568	89.62	245.4	0.06	5.88
Sr _{0.625} Ca _{0.375}	5.608	7.848	5.561	89.42	244.8	0.06	5.88
Sr _{0.500} Ca _{0.500}	5.590	7.835	5.539	89.50	242.6	0.07	5.86
Sr _{0.875} La _{0.125}	5.593	7.899	5.675	89.62	250.8	-0.03	5.81
Sr _{0.750} La _{0.250}	5.660	7.890	5.602	89.40	250.2	-0.13	5.76
Sr _{0.625} La _{0.375}	5.644	7.925	5.600	89.44	250.6	-0.17	5.59
Sr _{0.500} La _{0.500}	5.649	7.934	5.605	89.52	251.2	-0.32	5.64

Fig. 1. Schematic illustration of the setup of the coulometric titration cell used in the present work.

24–48 h, followed by furnace-cooling in the same atmosphere. Note that the optimized calcination and sintering conditions were searched for each sample composition separately. X-ray powder diffraction data were collected for the samples (XRD; Rigaku RINT-2000 diffractometer equipped with a copper rotating anode; CuK α radiation) to confirm the phase purity and to determine the lattice parameters.

Oxygen-content analysis: All the samples were characterized for the precise oxygen content employing a coulometric titration technique originally developed for half-metallic $Sr_2FeMoO_{6-\delta}$ samples [11] and modified here for the present A_2 MgMoO_{6- δ} samples. The technique is based on electrochemical oxidation of Mo^V and/or Fe^{II} species formed upon sample-dissolution in an acidic solution. Pentavalent Mo is not stable in the solution but most likely reduces Fe^{III} (if present) such that the species actually oxidized in the coulometric titration are not the Mo^V ions but rather an equivalent amount of Fe^{II} ions formed in the solution. Note that in the experiments reported in Ref. [11] for the $Sr_2FeMoO_{6-\delta}$ samples, the Fe^{II/III} species are in-situ formed upon sample dissolution, whereas in the present case the A_2 MgMo $O_{6-\delta}$ samples were dissolved in an acidic solution containing a known amount of Fe^{III} ions. The experiment was carried out as follows: an accurately weighed $\sim 25 \text{ mg}$ powder specimen of the A_2 MgMoO_{6- δ} sample was dissolved in 200 ml oxygen-freed (by means of N₂-gas bubbling) 3 M HCl solution containing an excess of Fe^{III} ions. The titration was carried out under N₂-gas flow in order to prevent air-oxidation of the species to be oxidized electrochemically. The electrochemical oxidation of Fe^{II} (and Mo^V if present) was performed at a constant current of 1.5 mA until the potential against the Ag/AgCl electrode reached 820 mV [11], see Fig. 1 for the setup of the titration cell. The titration curves obtained for our A_2 MgMoO_{6- δ} samples were essentilly identical to that presented in Ref. [11] for $Sr_2FeMoO_{6-\delta}$. From the time required for the titration the quantity of electrons produced and thus the amount of Mo^{V} in the sample specimen (and the δ value in the A_2 MgMoO_{6- δ} phase studied) could be calculated. For each A_2 MgMoO_{6- δ} composition the titration experiment was repeated ten times to obtain the oxygen-content value $6-\delta$ with a reproducibility better than ± 0.01 (independent of the sample composition). Here it should also be mentioned that the Fe^{III} ions were generated in the solution prior to the sample-dissolution from $\sim 5 \text{ mg}$ FeCl₂ (dissolved in the solution) through electrochemical $Fe^{II} \rightarrow Fe^{III}$ oxidation performed with the same experimental parameters as those used for the coulometric titration proper.

3. Results and discussion

X-ray diffraction measurements revealed that phase-pure samples were reproducibly obtained within the entire substitution range for $(Sr_{1-x}Ba_x)_2MgMoO_{6-\delta}$ and up to x = 0.5 for the other two systems, $(Sr_{1-x}Ca_x)_2MgMoO_{6-\delta}$ and $(Sr_{1-x}La_x)_2MgMoO_{6-\delta}$, see the XRD patterns presented in Fig. 2 for representative samples. Lattice parameters were refined for all the samples in an acceptable manner from the XRD data in space group $P2_1/n$ [5,6,10], see Fig. 3 for the case of the

Fig. 2. XRD patterns for the $Ba_2MgMoO_{6-\delta}$ (top), $Sr_2MgMoO_{6-\delta}$, $(Sr_{0.5}Ca_{0.5})_2$ MgMoO_{6- δ} and $(Sr_{0.5}La_{0.5})_2MgMoO_{6-\delta}$ (bottom) samples.

Fig. 3. Observed, calculated and difference XRD profiles from Rietveld refinement of data for the space group P2₁/n (the ticks refer to the Bragg positions).

Fig. 4. Unit-cell volume plotted against the average ionic radius of the A-site cations for the isovalent $(Ba,Sr,Ca)_2MgMoO_{6-\delta}$ (•) and aliovalent $(Sr,La)_2MgMoO_{6-\delta}$ (o) samples.

 $(Sr_{0.5}La_{0.5})_2MgMoO_{6-\delta}$ sample. The results are summarized in Table 1. In Fig. 4 we plot the unit-cell volume *V* against the average ionic radius of the *A*-site constituent ions, $r(A^{II/III})$. For the divalent *A*-site constituents, *V* systematically increases with increasing $r(A^{II})$, as expected. Moreover seen from Fig. 2 is that in the $(Sr_{L}A)_2MgMoO_{6-\delta}$ system gradual replacement of the larger Sr^{II} ions $[r(Sr^{II}) = 1.44 \text{ Å}]$ by the slightly smaller La^{III} ions $[r(La^{III}) = 1.36 \text{ Å}]$ does not decrease the size of the unit-cell but rather increases it. This may be attributed to the electron-doping effect, that is, a decrease in the valence state of molybdenum, v_{Mo} , upon the aliovalent La^{III} -for-Sr^{II} substitution.

Results of the oxygen-content analyses are also summarized in Table 1. The original Sr₂MgMoO_{6- δ} phase is found oxygen-deficient as expected: for the present Sr₂MgMoO_{6- δ} samples synthesized in 5% H₂/Ar gas flow the δ value was determined at 0.05. Substitution of divalent Sr by the other divalent alkaline-earth elements did not change the situation strongly. However, careful inspection of the results obtained for the two sample series, (Sr,Ba)₂MgMoO_{6- δ} and (Sr,Ca)₂MgMoO_{6- δ}, reveals a weak but systematic trend of increasing vacancy concentration (and decreasing v_{Mo}) with decreasing $r(A^{II})$, from $\delta = 0.04$ ($v_{Mo} = 5.92$) for the Ba₂MgMoO_{6- δ} sample to $\delta = 0.07$ ($v_{Mo} = 5.86$) for (Sr_{0.5}Ca_{0.5})₂MgMoO_{6- δ}.

Fig. 5. Valence of molybdenum plotted against the average ionic radius of the A-site cations for the isovalent $(Ba,Sr,Ca)_2MgMoO_{6-\delta}$ (•) and aliovalent $(Sr,La)_2MgMoO_{6-\delta}$ (o) samples.

For the $(Sr,La)_2MgMoO_{6-\delta}$ system it was found that the aliovalent La^{III}-for-Sr^{II} substitution results in a gradual decrease in the valence value of molybdenum, $v_{\rm Mo}$ (see Table 1). However, the decrease rate in $v_{\rm Mo}$ is lower than that anticipated if the oxygen content is assumed to remain unaffected. In Fig. 5, we plot the valence value of molybdenum against the average ionic radius $r(A^{II/III})$ for all the presently studied A_2 MgMoO_{6- δ} samples. With increasing La content x in $(Sr_{1-x}La_x)_2MgMoO_{6-\delta}$, the Mo-valence value decreases from $v_{Mo} = 5.9$ for x = 0 to $v_{Mo} \approx 5.6$ for x > 0.3. Provided that the oxygen content remains the same independent of the degree of the La^{III}-for-Sr^{II} substitution, the v_{Mo} value should decrease below 5.0 for x = 0.5. Apparently, with increasing x in $(Sr_{1-x}La_x)_2MgMoO_{6-\delta}$ the oxygen content $6-\delta$ gradually increases to partially counterbalance the electron-doping effect on the valence state of molybdenum, see Table 1. Such a phenomenon is rather common among related perovskite oxide systems.

Finally we note from Table 1 that for the La-substituted samples oxygen-content values higher than 6.00 were obtained. These values should, however, not be taken literally as an indication of presence of interstitial oxygen atoms in these samples; it is well known that the perovskite framework allows oxygen vacancies but not oxygen interstitials. Hence the nominal oxygen *surplus* detected in the La-substituted samples should be understood as a presence of cation vacancies rather than oxygen

interstitials, *cf*. the LaMnO_{3+ δ} or La_{1-x}Mn_{1-x}O₃ simple perovskite system [12].

4. Conclusion

In the present work we have developed a highly reproducible and sensitive redox analysis method which allowed us to accurately establish the oxygen-content/Mo-valence values for the promising new SOFC-anode material Sr₂MgMoO_{6- δ} and its *A*site substituted derivatives. For all the *A*₂MgMoO_{6- δ} samples with divalent *A*-site constituents oxygen vacancies with a concentration δ ranging from 0.04 (*A* = Ba) to 0.07 (*A* = Sr_{0.5}Ca_{0.5}) were detected with a weak tendency of increasing δ with decreasing *r*(*A*^{II}). Also revealed was that upon the aliovalent La^{III}-for-Sr^{II} substitution the electron-doping effect is partially counterbalanced by an increase in the oxygen-to-metal content ratio.

Acknowledgments

The present work was supported by a Grant for R&D of New Interdisciplinary Fields in Nanotechnology and Materials Program of MEXT of Japan and also by Tekes (no. 1726/31/07) and Academy of Finland (no. 126528).

References

- [1] E.P. Murray, T. Tsai, S.A. Barnett, Nature 400 (1999) 649.
- [2] S. Tao, J.T.S. Irvine, Nature Mater. 2 (2003) 320.
- [3] A. Atkinson, S. Barnett, R.J. Gorte, J.T.S. Irvine, A.J. McEvoy, M. Mogensen, S.C. Singhal, J. Vohs, Nature Mater. 3 (2004) 17.
- [4] J.B. Goodenough, Y.H. Huang, J. Power Sources 173 (2007) 1.
- [5] Y.H. Huang, R.I. Dass, Z.L. Xing, J.B. Goodenough, Science 312 (2006) 254.
- [6] Y.H. Huang, R.I. Dass, J.C. Denyszyn, J.B. Goodenough, J. Electrochem. Soc. 153 (2006) A1266.
- [7] C. Bernuy-Lopez, M. Allix, C.A. Bridges, J.B. Claridge, M.J. Rosseinsky, Chem. Mater. 19 (2007) 1035.
- [8] D. Marrero-Lopez, J. Pena-Martinez, J.C. Ruiz-Morales, D. Perez-Coll, M.A.G. Aranda, P. Nunez, Mater. Res. Bull. 43 (2008) 2441.
- [9] Y. Ji, Y.H. Huang, J.R. Ying, J.B. Goodenough, Electrochem. Commun. 9 (2007) 1881.
- [10] Y.H. Huang, J. Lindén, H. Yamauchi, M. Karppinen, Chem. Mater. 16 (2004) 4337.
- [11] T. Yamamoto, J. Liimatainen, J. Linden, M. Karppinen, H. Yamauchi, J. Mater. Chem. 10 (2000) 2342.
- [12] H. Okamoto, H. Fjellvåg, H. Yamauchi, M. Karppinen, Solid State Commun. 137 (2006) 522.